重要日期
  • 会议注册截止
    2023年5月15日
  • 论文投稿截止
    2023年3月31日
  • 提前缴费优惠截止
    2023年4月30日
  • 首页 > 线上墙报
    玉米秸秆基分级多孔碳材料用于高性能超级电容器
    王瑞 李鑫怡 杨佳栗 杨美煜 赵阳 王欢*

    分会

    第六十一分会:能源化学

    摘要

    生物质由于来源广、微观形貌丰富、孔隙结构发达、成本低等优点,被广泛用于多孔碳材料的合成,进而应用于超级电容器的研究。 本文以玉米秸秆为前驱体,采用简单的炭化法成功地合成了分级多孔碳。然后通过原位还原法将银纳米粒子负载到玉米秸秆基多孔碳(CSPC)表面,制备出CSPC-Ag复合电极材料(图1a),并对其电化学性能进行了研究。同时以玉米秸秆为前驱体,采用一步碳化加水热法制备了NiCo2O4六方纳米板与三维多孔碳复合材料,可有效提高超级电容器的电化学性能。CSPC-Ag具有发达的微孔、介孔及大孔分级孔道结构,通过优化Ag负载量(5 wt%),其比表面积可高达1140.8 m2/g,在0.5 A g-1 电流密度下进行恒电流充放电测试,其比电容达到323 F g-1(纯CSPC为185.7 F g-1)(图1b)。通过稳定性的测试,发现循环4000次后,比电容仍保持在初始值的93.2%(图1c),并以此为电极组装的超级电容器能量密度可达44.97 Wh/kg,性能优于商业报道的碳基超级电容器。与CSPC或单一NiCo2O4纳米板相比,制备的复合材料具有较高的比电容和较长的循环寿命,这是由于CSPC具有高导电的富含孔隙结构,NiCo2O4具有高能量密度、良好的氧化还原性能和较短的离子传输通道。在6 M KOH电解液中,当电流密度为0.5 A g-1时,比电容可达959.2 F g−1;在电流密度为20 A g-1时,循环次数超过5000次,电容保持率可达93%,表明该复合材料可作为开发高性能超级电容器的优秀电极材料。本研究的初步结果也为开发高性能超级电容器电极材料以及实现农业废弃玉米秸秆的高附加值转化和利用提供了一个可行的思路。 关键词:生物质;多孔碳;银纳米粒子;六边形NiCo2O4纳米片;超级电容器; Fig. 1 (a) XRD patterns of CSPC-1 and CSPC-1-5% Ag; (b) GCD curves of CSPC and CSPC-Ag at a current density of 0.5 A g-1; (c) Cyclic performance of CSPC-1 and CSPC-1-5% Ag. Cornstalk- Based Hierarchical Porous Carbon Materials for High Performance Supercapacitors Rui Wang, Xinyi Li, Jiali Yang, Meiyu Yang, Yang Zhao, Huan Wang* College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China *Email: huanw@nepu.edu.cn In this work, hierarchical porous carbon was synthesized by simple carbonization methods using cornstalk as a precursor. Then the CSPC-Ag composite electrode material was prepared using a in-situ reduction method by loading Ag nanoparticles onto the surface of corn stover based porous carbon (CSPC), and its electrochemical performance was studied Here, the one-step carbonization process plus hydrothermal method is proposed to prepare the composite of NiCo2O4 hexagonal nanoplates and three-dimensional porous carbon using cornstalk as the precursor, which can effectively enhance the electrochemical properties of supercapacitors. CSPC-Ag has developed microporous, mesoporous and macroporous porous structure. By optimizing Ag load (5 wt%), its specific surface area can reach 1140.8 m2/g. Constant current charge-discharge test is conducted at 0.5 A g-1 current density. Its specific capacitance reaches 323 F g-1 (185.7 F g-1 for pure CSPC). Through the stability test, it is found that the specific capacitance remains at 93.2% of the initial value after 4000 cycles, and the energy density of the supercapacitor assembled with this electrode can reach 44.97Wh /kg, and the performance is better than that of the carbon based supercapacitor reported by commercial reports. Compared with the bare cornstalk-derived porous carbon (CSPC) or single NiCo2O4 nanoplates, the as-prepared composite exhibits high specific capacitance and long cycle life, which can be ascribed to the integration of the merits of CSPC with highly-conductive pore-rich structure and NiCo2O4 with high energy density, good redox property and short ion transport channel. The specific capacitance can reach 959.2 F g−1 in 6 M KOH electrolyte at a current density of 0.5 A∙g−1, as well as the capacitance retention of 93% at a current density of 20 A∙g−1 over more than 5000 cycles, indicating that this composite can be considered as an outstanding electrode material for the development of high-performance supercapacitors. Keywords: Biomass resource; Porous carbon; Ag NPs, NiCo2O4 hexagonal nanoplates; Supercapacitor;

    关键词

    生物质;多孔碳;银纳米粒子;六边形NiCo2O4纳米片;超级电容器

    线上墙报仅限年会已缴费参会代表观看。

    您还没有登录,请您先 点击这里登录