分会
第四十五分会:能源纳米材料物理化学
摘要
FeS2/SnS2/rGO异质结提升储钠性能 周上睿,宋轲铭,彭程斌,颜永亮,陈卫华* 郑州大学化学学院,绿色催化中心,河南,郑州,450001 *E-mail: chenweih@zzu.edu.cn 钠离子电池(SIBs)由于钠资源丰富且价格低廉,被认为是最有发展前景的下一代大规模储能体系之一。开发高比容量、长循环寿命、高倍率性能的转化-合金类负极材料具有重要实际意义。[1-7] 为解决其在嵌/脱钠过程中体积变化大和导电性差的问题,我们设计合成了锡铁基异质结作为负极材料以实现高性能的钠离子电池。通过XRD(Fig 1a)测试表明产物由空间群为P63mc(186)的六方相SnS2(PDF no.89-3198)和空间群为Pa-3(205)的立方型FeS2(PDF no.41-1471)构建而成,说明SnS2/FeS2异质结的形成。与容量衰减较快的FeS2/rGO相比,FeS2/SnS2/rGO循环100周后容量保持率为94%(Fig 1b),表现出优异的循环稳定性,这得益于FeS2和SnS2的协同效应使其具有较高的可逆性。此外,该材料具有较好的倍率性能,在2 A g-1下容量保持在280 mAh g-1,极化程度较小(如Fig 1c所示)。表明这是一种能够有效提高转化-合金类电极材料可逆性和反应动力学的结构优化策略。 Fig.1 (a) XRD patterns of SnS2/FeS2/rGO heterostructure. (b) Electrochemical performance of SnS2/FeS2/rGO heterostructure and FeS2/rGO. (c) Charge/discharge curves of SnS2/FeS2/rGO heterostructure at various current densities. 关键词:钠离子电池;异质结构;FeS2/SnS2/rGO;循环稳定性 致谢:感谢国家自然科学基金(No. 21771164, U1804129) 和河南省中原千人计划的支持。 参考文献: [1]Chen,W.;* Zhang, X.; Mi, L.; Liu, C.; Zhang, J.; Cui, S.; Feng, X.; Cao, Y.;* Shen, C. Adv. Mater. 2019, 31, 1806664. [2]Zhang, J.; Song, K.; Mi, L.; Liu, C.; Feng, X.; Zhang, J.; Chen, W.;* Shen, C. J. Phys. Chem. Lett., 2020, 11, 1435. [3]Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen,W.;* Shen, C. Small. 2019, 1903194. [4]Chen,W.;* Song, K.; Mi, L.; Feng, X.; Zhang, J.;Cui, S.; Liu, C.* J. Mater. Chem. A, 2017, 5, 10027. [5]Yang, D.; Chen,W.;* Zhang, X.; Mi, L.; Liu, C.; Chen, L.; Guan, X.;* Cao, Y.;* Shen, C. J. Mater. Chem. A, 2019, 7, 19709. [6]Yang, K.; Zhang, X.; Song, K.; Zhang, J.; Liu, C.; Mi, L.; Wang Y.; Chen, W.* Electrochimica Acta, 2020, 135783. [7]Wang, T.; Yang, K.; Shi, J.; Zhou, S.; Mi, L.; Li, H.;* Chen, W.* J Energy Chem. 2020, 46, 71-77. Constructing FeS2/SnS2/rGO heterostructure with enhanced electrochemical performance for Na-ion batteries Shangrui Zhou, Keming Song, Chengbin Peng, Yongliang Yan, Weihua Chen* Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Sodium-ion batteries (SIBs), due to the elemental abundance and low cost of sodium, have been considered as one of most promising next generation large-scale energy storage devices. Being one key component of SIBs, various anode materials have been investigated such as carbonaceous substances, alloying materials, and conversion-type ones. The development of conversion-alloy anode materials with high specific capacity, long cycle life and high rate performance has great practical significance. [1-7] In order to solve the large volume change and poor conductivity of such materials during intercalation/deintercalation.We have designed and synthesized tin-iron-based heterojunctions as anode to accomplish high-performance SIBs. The XRD (Fig 1a) of SnS2/FeS2/rGO heterostructure can be indexed into hexagonal structure of SnS2 with space group P63mc(186) (PDF no. 89-3198) and cubic structure of FeS2 with space group Pa-3(205) (PDF no. 41-1471). Compared with FeS2/rGO with rapid capacity decay, the SnS2/FeS2/rGO displays excellent cyclic stability with capacity retention of 94% after 100 cycles at 0.5 A g-1(Fig 1b). This is benefited from high electrochemical reaction reversibility for the synergistic effect of FeS2 and SnS2. In addition, it can exhibit good rate performance. At a current density of 2 A g-1(Fig 1c), it has a smaller polarization and the capacity remains at 280 mAh g-1.The boosted Na-storage properties demonstrate that this is a structural optimization strategy, which can effectively improve the reversibility and reaction kinetics of conversion-alloy electrode materials.
关键词
钠离子电池;异质结构;FeS2/SnS2/rGO;循环稳定性
线上墙报仅限年会已缴费参会代表观看。
您还没有登录,请您先 点击这里登录