高级会员
欢迎 尉慰奇 会员加入中国化学会
欢迎 李保宁 会员加入中国化学会
欢迎 张瑞岩 会员加入中国化学会
欢迎 胡华伟 会员加入中国化学会
欢迎 肖瑶 会员加入中国化学会
欢迎 王俊川 会员加入中国化学会
欢迎 吴称意 会员加入中国化学会
欢迎 卢锡立 会员加入中国化学会
欢迎 张春晓 会员加入中国化学会
欢迎 刘志鹏 会员加入中国化学会
欢迎 常智伟 会员加入中国化学会
欢迎 罗孟翔 会员加入中国化学会
欢迎 吴籼虹 会员加入中国化学会
欢迎 沈运霞 会员加入中国化学会
欢迎 孙晓 会员加入中国化学会
欢迎 陈熙 会员加入中国化学会
欢迎 张大帅 会员加入中国化学会
欢迎 王晋 会员加入中国化学会
欢迎 汤雨晴 会员加入中国化学会
欢迎 刘人铭 会员加入中国化学会
咨询:haojiangtao@iccas.ac.cn
男, 清华大学核能与新能源技术研究院, 教授/研究员/教授级高工或同等级别
学习/工作经历
1982年9月-1987年7月,清华大学化学化工系,工学学士
1987年9月-1989年12月,清华大学化工系,工学硕士
2005年9月-2007年7月,清华大学核能与新能源技术研究院,工学博士
1989年12月至今,清华大学核能与新能源技术研究院
现任新型能源与材料化学研究室主任,研究员,博士生导师
研究领域和兴趣
材料化学,能源化学,锂离子电池,吸附储氢
主要业绩
20多年来,一直从事锂离子电池及其关键材料研究,重点围绕锂离子电池的电性能及安全性关键科学问题,以材料化学为核心,通过多学科协同的创新解决锂离子电池中的关键材料技术、关键设计及制造技术及关键测试评估技术。在高比能量负极规模化制备技术、聚合物基高稳定性电解质、氧化物正极材料安全性改性方面具有丰富的生产研发经验。科研兴趣从材料、电芯、模组层面,以及生产制造技术方面,研究解决动力电池的一致性、安全性、热特性,以及可靠性的问题。曾经开展过涂胶膜技术(2004-2012)、补锂技术(2004-2006)、固态电池(2004-2012)、锂硫电池(2005-2014)、电池寿命预测(2008-2011)等技术研究,2008年以来重点研究电池的安全性机理和解决方案。
著有《锂离子电池正极材料规模化生产技术》、《聚合物性能与结构》、《电动汽车动力电池系统安全分析与设计》、《锂离子电池模组设计手册》等专著。获发明专利授权400多项,其中美国专利收取超过80项,日本、韩国、欧洲专利授权超过50项。发表论文560多篇,其中SCI论文310多篇,获一次部级技术发明一等奖。获专利授421项。
近年来,除坚持锂电领域的创新研究外,研究工作还聚焦材料化学,开展了聚合物化学,MOFs/COFs多孔材料,储氢材料,计算电化学等研究。同时开展锂电及材料技术和燃料电池技术的产业化技术研发。
代表成果
编著书籍
1. 聚合物性能与结构 周啸 何向明编,清华大学出版社,2015
2. 电动汽车动力电池系统安全分析与设计 王芳 夏军 何向明 等,科学出版社,2016
3. 锂离子电池模组设计手册 王莉 何向明 等,清华大学出版社,2019
4. 锂离子电池正极材料规模化生产技术,何向明、王莉等,清华大学出版社,2017年12月,220千字
发表期刊论文(作者识别号: 0000-0001-7146-4097)
2021年发表论文:
1. Piao, N.; Liu, S.; Zhang, B.; Ji, X.; Fan, X.; Wang, L.; Wang, P.-F.; Jin, T.; Liou, S.-C.; Yang, H.; Jiang, J.; Xu, K.; Schroeder, M. A.; He, X.; Wang, C., Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters 2021, 6, 1839–1848.
2. Li, Z.; Sheng, L.; Wang, H.; Wang, X.; Li, M.; Xu, Y.; Cui, H.; Zhang, H.; Liang, H.; Xu, H.; He, X., Three-Dimensional Covalent Organic Framework with ceq Topology. J. Am. Chem. Soc. 2021, 143 (1), 92-96.
3. Zhao, Y.; Liang, Z.; Kang, Y.; Zhou, Y.; Li, Y.; He, X.; Wang, L.; Mai, W.; Wang, X.; Zhou, G.; Wang, J.; Li, J.; Tavajohi, N.; Li, B., Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials 2021, 35, 353-377.
4. Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X., Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials 2021, 36, 147-170.
5. Zhang, H.; Wu, H.; Wang, L.; Xu, H.; He, X., Benzophenone as indicator detecting lithium metal inside solid state electrolyte. J. Power Sources 2021, 492, 229661.
6. Xie, X.; Ren, D.; Wang, L.; Feng, X.; He, X., Investigation on Thermal Runaway of Li-Ion Cells Based on LiNi1/3Mn1/3Co1/3O2. Journal of Electrochemical Energy Conversion and Storage 2021, 18 (3), 031001.
7. Wu, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Li, Y.; Rui, X.; Wang, Y.; Han, X.; Xu, G.-L.; Wang, H.; Lu, L.; He, X.; Amine, K.; Ouyang, M., Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials 2021, 37 (5), 77-86.
8. Song, Y.; Sheng, L.; Wang, L.; Xu, H.; He, X., From separator to membrane: separators can function more in lithium ion batteries. Electrochemistry Communications 2021.
9. Ren, D.; Xie, L.; Wang, L.; He, X., A practical approach to predict volume deformation of lithium ion batteries from crystal structure changes of electrode materials. Int J Energ Res 2021.
10. Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M., Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials 2021, 34, 563-573.
11. Piao, N.; Wang, L.; He, X., Anodic Stabilities of Various Metals as the Current Collector in High Concentration Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2021.
12. Li, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Wu, Y.; Xu, G.; Lu, L.; Hou, J.; Zhang, W.; Wang, Y.; Xu, W.; Ren, Y.; Wang, Z.; Huang, J.; Meng, X.; Han, X.; Wang, H.; He, X.; Chen, Z.; Amine, K.; Ouyang, M., Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 2021.
13. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8 (1), 2.
14. Ding, K.; Zhang, D.; Chen, J.; Han, J.; Shi, F.; Li, B.; He, X.; Wang, L.; Wang, H.; Wang, Y., Unexpected electocatalytic activity of a micron-sized carbon sphere-graphene (MS-GR) supported palladium composite catalyst for ethanol oxidation reaction (EOR). Mater. Chem. Phys. 2021, 259.
15. Ding, K.; Qu, R.; Han, J.; Zhou, L.; Zhang, D.; Chen, J.; He, X.; Wang, L.; Wang, H.; Wang, Y., Unexpected facilitation of the pyrolysis products of potassium ferrocyanide to the electrocatalytic activity of a PdO based palladium iron composite catalyst towards ethanol oxidation reaction (EOR). Int. J. Hydrog. Energy 2021, 46 (1), 633-644.
16. Cui, H.; Song, Y.; Sheng, L.; Wang, L.; Xu, H.; Tian, G.; He, X., Pry into the thermal and mechanical properties of electrolyte-soaked separators. Journal of the Taiwan Institute of Chemical Engineers 2021.
17. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83-99.
18. 王莉; 谢乐琼; 田光宇; 何向明, 锂离子电池安全事故:安全性问题,还是可靠性问题. 储能科学与技术 2021.
19. 王莉; 刘建红; 何向明, 红磷复合负极实用化研究进展. 储能科学与技术 2021.
2020年发表论文:
20. Hou, J.; Lu, L.; Wang, L.; Ohma, A.; Ren, D.; Feng, X.; Li, Y.; Li, Y.; Ootani, I.; Han, X.; Ren, W.; He, X.; Nitta, Y.; Ouyang, M., Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications 2020, 11 (1).
21. Feng, X.; Ren, D.; He, X.; Ouyang, M., Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4 (4), 743-770.
22. Li, Z.; Sheng, L.; Wang, H.; Wang, X.; Li, M.; Xu, Y.; Cui, H.; Zhang, H.; Liang, H.; Xu, H.; He, X., Three-Dimensional Covalent Organic Framework with ceq Topology. J Am Chem Soc 2020.
23. Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. C.; Wang, L.; Wang, C.; He, X., Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials 2020, 10 (10).
24. Wu, Y.; Xie, l.; Ming, H.; Guo, Y.; Hwang, J.-Y.; Wang, W.; He, X.; Wang, L.; Alshareef, H. N.; Sun, Y.-K.; Ming, J., An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters 2020, 5 (3), 807-816.
25. Mao, E.; Wang, W.; Wan, M.; Wang, L.; He, X.; Sun, Y., Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13 (4), 1122-1126.
26. Li, Y.; Liu, X.; Ren, D.; Hsu, H.; Xu, G.-L.; Hou, J.; Wang, L.; Feng, X.; Lu, L.; Xu, W.; Ren, Y.; Li, R.; He, X.; Amine, K.; Ouyang, M., Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy 2020, 71.
27. Sheng, S.-e.; Sheng, L.; Wang, L.; Piao, N.; He, X., Thickness variation of lithium metal anode with cycling. J. Power Sources 2020, 476.
28. Guo, S.; Piao, N.; Wang, L.; Xu, H.; Tian, G.; Li, J.; He, X., PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Applied Energy Materials 2020, 3 (7), 7191-7199.
29. Liu, W.; Liu, J.; Zhu, M.; Wang, W.; Wang, L.; Xie, S.; Wang, L.; Yang, X.; He, X.; Sun, Y., Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Appl Mater Interfaces 2020.
30. Sheng, L.; Wang, L.; Wang, J.; Xu, H.; He, X., Accelerated Lithium-ion Conduction in Covalent Organic Frameworks. Chem Commun 2020, 56, 10465 - 10468.
31. Zhao, Y.; Liang, Z.; Kang, Y.; Zhou, Y.; Li, Y.; He, X.; Wang, L.; Mai, C.; Wang, X.; Zhou, G.; Wang, J.; Li, J.; Tavajohi, N.; Li, B., Rational Design of Functional Binder Systems for High-Energy Lithium-based Rechargeable Batteries. Energy Storage Materials 2020.
32. Zhao, H.; Sheng, L.; Wang, L.; Xu, H.; He, X., The opportunity of Metal Organic Frameworks and Covalent Organic Frameworks in Lithium (ion) Batteries and Fuel Cells. Energy Storage Materials 2020, 33, 360-381.
33. Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X., Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials 2020, 33, 188-215.
34. Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M., Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials 2020.
35. Liu, L.; Feng, X.; Zhang, M.; Lu, L.; Han, X.; He, X.; Ouyang, M., Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Appl. Energy 2020, 259 (259), 13.
36. Xie, L.; Ren, D.; Wang, L.; Chen, Z.; Tian, G.; Amine, K.; He, X., A Facile Approach to High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Sci Rep-Uk 2020, 10 (1), 7182.
37. Kang, Y.; Liang, Z.; Zhao, Y.; Xu, H.; Qian, K.; He, X.; Li, T.; Li, J., Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. SCIENCE CHINA Materials 2020, 63 (9), 1683-1692.
38. Guo, S.; Wang, L.; Jin, Y.; Piao, N.; Chen, Z.; Tian, G.; Li, J.; Zhao, C.; He, X., A polymeric composite protective layer for stable Li metal anodes. Nano Convergence 2020, 7 (1), 21.
39. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: A Review. Nano Convergence 2020.
40. Ding, K.; Zhou, L.; Qu, R.; Zhang, D.; Chen, J.; He, X.; Wang, L.; Wang, H.; Dou, H., Honeycomb-shaped carbon particles prepared from bicycle waste tires for anodes in lithium ion batteries. Mater. Chem. Phys. 2020, 251.
41. Ding, K.; Zhang, D.; Chen, J.; Han, J.; Shi, F.; Li, B.; He, X.; Wang, L.; Wang, H.; Wang, Y., Unexpected electocatalytic activity of a micron-sized carbon sphere-graphene (MS-GR) supported palladium composite catalyst for ethanol oxidation reaction (EOR). Mater. Chem. Phys. 2020.
42. Hong, B.; He, X.; Yi, H.; Hu, C., Effect of PVP Coating on LiMnBO3 Cathodes for Li-Ion Batteries. Materials 2020, 13, 5528.
43. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 2020.
44. Ding, K.; Qu, R.; Zhou, L.; Zhang, D.; Chen, J.; He, X.; Wang, L.; Wang, H.; Dou, H., Preparation of CuBr nanoparticles on the surface of the commercial copper foil via a soaking method at room temperature: Its unexpected facilitation to the discharge capacity of the commercial graphite electrode. J. Electroanal. Chem. 2020, 877.
45. Ding, K.; Qu, R.; Zhou, L.; Zhang, D.; Chen, J.; He, X.; Wang, L.; Wang, H.; Dou, H., In situ preparation of CuCl cubic particles on the commercial copper foil: its significant facilitation to the electrochemical performance of the commercial graphite and its unexpected photochromic behavior. J. Alloy. Compd. 2020, 835.
46. Ding, K.; Qu, R.; Han, J.; Zhou, L.; Zhang, D.; Chen, J.; He, X.; Wang, L.; Wang, H.; Wang, Y., Unexpected facilitation of the pyrolysis products of potassium ferrocyanide to the electrocatalytic activity of a PdO based palladium iron composite catalyst towards ethanol oxidation reaction (EOR). Int. J. Hydrog. Energy 2020.
47. Ding, K.; Han, J.; Gao, X.; Wang, L.; Zhou, L.; Qu, R.; He, X., An ionic liquid-present hydrothermal method for preparing hawthorn sherry ball shaped palladium (Pd)-based composite catalysts for ethanol oxidation reaction (EOR). Int. J. Hydrog. Energy 2020, 45 (3), 1930-1939.
48. Ren, D.; Xie, L.; Wang, L.; He, X., A practical approach to predict volume deformation of lithium ion batteries from crystal structure changes of electrode materials. Int J Energ Res 2020.
49. Xie, X.; Wang, L.; Feng, X.; Ren, D.; He, X., High-temperature Aging Behavior of Commercial Li-Ion Batteries. Int. J. Electrochem. Sci. 2020, 15 (5), 4586-4591.
50. Ding, K.; Gao, X.; Han, J.; He, X.; Qu, R.; Zhou, L.; Dou, H.; Wang, H.; Wang, L., An Ionic Liquid-Present Method for Preparing Micro-sized Octahedral Particles of Co3O4 and Their Applications as Anode Materials for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2020, 15 (5), 4684-4701.
51. Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B. Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; Han, X.; Ren, D.; Wang, Y.; Li, R.; Jin, C.; Huang, P.; Yi, M.; Wang, L.; Zhao, Y.; Patel, Y.; Offer, G., A reliable approach of differentiating discrete sampled-data for battery diagnosis. eTransportation 2020, 3.
52. 赵红; 王莉; 何向明, 快速充电锂离子电池LiEuTiO4负极材料研究进展. 稀有金属材料与工程 2020, 49 (11), 7.
53. 张牮; 李建刚; 亢玉琼; 何向明; 刘才, 木质素基碳微球的制备及其储锂性能研究. 化工新型材料 2020, 1-15.
54. 谢乐琼; 王莉; 田光宇; 何向明, 锂离子电池一致性筛选新方法——串联充放电筛选. 电源技术 2020, 44 (2), 149-152.
55. 谢乐琼; 王莉; 何向明; 田光宇, 磷酸铁锂电极的路径依赖. 电源技术 2020, 44 (10), 1408-1411.
56. 谢乐琼; 王莉; 庞小英; 何向明; 田光宇, PFPN用于多功能电解液添加剂: 耐高电压和阻燃性能研究. 电池工业 2020, 24 (2), 66-70.
57. 盛思锷; 谢乐琼; 王莉; 田光宇; 何向明, 一种在循环过程中追踪电池厚度变化的原位测试方法. 电池工业 2020, 24 (03), 157-160.
2019年发表论文:
58. Yongming Sun†, Li Wang†, Yanbin Li, Yuzhang Li, Hye Ryoung Lee, Allen Pei, Xiangming He, Yi Cui, Design of red phosphorus nanostructured electrode for fast charging lithium-ion batteries with high energy density, Joule, 2019, 3 (4), 1080-1093.
59. Wang, L., Luo, Z., Xu, H., Piao, N., Chen, Z., Tian, G., He, X., Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes. RSC Adv. 2019, 9 (71), 41837-41846.
60. Zhao, H., Wang, L., Chen, Z., He, X., Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review. Energies 2019, 12 (20).
61. Ren, D., Hsu, H., Li, R., Feng, X., Guo, D., Han, X., Lu, L., He, X., Gao, S., Hou, J., Li, Y., Wang, Y., Ouyang, M., A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2019, 2.
62. X. Feng, C. Weng, X. He, X. Han, L. Lu, D. Ren, M. Ouyang, IEEE Transactions on Vehicular Technology, 68 (2019) 8583-8592.
63. Ren, D., Feng, X., Lu, L., He, X. & Ouyang, M. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy 250, 323-332, doi:10.1016/j.apenergy.2019.05.015 (2019).
64. Weifeng Tian, Li Wang, Kaifu Huo, Xiangming He, Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries, J. Power Sources, 430 (2019) 60-66.
65. N. Piao, L. Wang, T. Anwar, X. Feng, S.e. Sheng, G. Tian, J. Wang, Y. Tang, X. He, Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries, Corrosion Science, 158 (2019) 108100.
66. X. N. Feng, D. S. Ren, S. C. Zhang, X. M. He, L. Wang, and M. G. Ouyang, "Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests," International Journal of Electrochemical Science, vol. 14, no. 1, pp. 44-58, Jan 2019.
67. Wu, Y., Ming, H., Li, M., Zhang, J., Wahyudi, W., Xie, L., He, X., Wang, J., Wu, Y., Ming, J., New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. Acs Energy Letters 2019, 4 (3), 656-665.
68. Yingqiang Wu, Wenxi Wang, Jun Ming, Mengliu Li, Leqiong Xie, He Xiangming, Jing Wang, Shuquan Liang, Yuping Wu, An Exploration of New Energy Storage System: High Energy Density, High Safety and Fast Charging Lithium Ion Battery, Advanced Functional Materials 2019, 29 (1).
69. Pan, E., Jin, Y., Zhao, C., Jia, M., Chang, Q., Jia, M., Wang, L., He, X., Conformal Hollow Carbon Sphere Coated on Sn4P3 Microspheres as High-Rate and Cycle-Stable Anode Materials with Superior Sodium Storage Capability. ACS Applied Energy Materials 2019, 2 (3), 1756-1764.
70. Jia, M., Jin, Y., Zhao, P., Zhao, C., Jia, M., Wang, L., He, X., Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries. Electrochim. Acta 2019, 310, 230-239.
71. Feng, X., Zheng, S., Ren, D., He, X., Wang, L., Liu, X., Li, M., Ouyang, M., Key Characteristics for Thermal Runaway of Li-ion Batteries. Energy Procedia 2019, 158, 4684-4689.
72. Feng, X., Zheng, S., Ren, D., He, X., Wang, L., Cui, H., Liu, X., Jin, C., Zhang, F., Xu, C., Hsu, H., Gao, S., Chen, T., Li, Y., Wang, T., Wang, H., Li, M., Ouyang, M., Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 2019, 246, 53-64.
73. Feng, X., Xu, C., He, X., Wang, L., Gao, S., Ouyang, M., A graphical model for evaluating the status of series-connected lithium-ion battery pack. Int J Energ Res 2019, 43 (2), 749-766.
74. 谢乐琼,王莉,胡坚耀,何向明.锂离子动力电池产业技术发展概述[J].新材料产业,2019(01):38-44.
75. 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明, 锂离子电池硅基负极及其相关材料. 化学进展 2019, (04), 613-630.
76. 王丽媛, 李建刚, 姚琼, 何向明, 刘才, 高容量富锂三元材料xLi2MnO3·(1-x)LiNi0.6Co0.2Mn0.2O2的制备与性能研究. 化工新型材料 2019, 47 (03), 67-70+75.
77. 蒋志敏,王莉,沈旻,陈慧闯,马国强,何向明.锂离子电池正极界面修饰用电解液添加剂[J].化学进展,2019,31(05):699-713
2018年发表论文:
78. X. Feng, C. Xu, X. He, L. Wang, S. Gao, and M. Ouyang, "Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode," Frontiers in Energy Research, vol. 6, Nov 26 2018, Art. no. Unsp 126.
79. X. Feng, C. Xu, X. He, L. Wang, G. Zhang, and M. Ouyang, "Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity," Journal of Cleaner Production, vol. 205, pp. 447-462, 2018.
80. M. Zhang et al., "Internal short circuit detection method for battery pack based on circuit topology," Science China Technological Sciences, vol. 61, no. 10, pp. 1502-1511, 2018.
81. J. Y. Li, Y. M. Qian, L. Wang, and X. M. He, "Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries," (in English), Materials, vol. 11, no. 1, Jan 2018.
82. X. Feng, C. Xu, X. He, L. Wang, S. Gao, and M. Ouyang, "A graphical model for evaluating the status of series-connected lithium-ion battery pack," International Journal of Energy Research, 2018.
83. X. Feng, C. Xu, X. He, L. Wang, S. Gao, and M. Ouyang, "A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 165, no. 16, pp. A3748-A3765, 2018.
84. Xuning Feng, Yu Merla, Caihao Weng, Minggao Ouyang, Xiangming He, Bor Yann Liaw, Shriram Santhanagopalan, Ping Liu, Xuebing Han, Languang Lu, Li Wang, Yan Zhao, Yatish Patel, Gregory Offer, A universal approach for the differential analysis of battery behaviour and degradation, Nature Energy, 2018, submitted
85. Xuning Feng, Xiangming He, Minggao Ouyang, Li Wang, Languang LU, Dongsheng Ren, Shriram Santhanagopalan, A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries, Journal of the Electrochemical Society, 2018, 165(16): A3748-A3765,doi:10.1149/2.0311816jes
86. Xuning FENG, Chengshan XU, Xiangming HE, Li WANG, Shang GAO, Minggao OUYANG, A graphical model for evaluating the status of series-connected lithium-ion battery pack,International Journal of Energy Research, 2018, revised
87. Guoqiang Ma, Li Wang, Xiangming He, Jianjun Zhang, Huichuang Chen, Weiguo Xu, Yuansheng Ding, Pseudo-Concentrated Electrolyte with High Ionic Conductivity and Stability Enables High Voltage Lithium-Ion Battery Chemistry, ACS Applied Energy Materials, accepted, doi: 10.1021/acsaem.8b01020
88. Xuning Feng, Caihao Weng, Xiangming He, Li Wang, Dongsheng Ren, Languang Lu, Xuebing Han, Minggao Ouyang, Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study, Energies 2018, 11(9), 2323,doi:10.3390/en11092323
89. Xuning Feng, Chengshan Xu, Xiangming He, Li Wang, Gan Zhang, Minggao Ouyang, Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity, Journal of Cleaner Production, 2018, 205: 447-462.
90. Xiang Liu, Dongsheng Ren, Hungjen Hsu, Xuning Feng, Gui-Liang Xu, Minghao Zhuang, Han Gao, Languang Lu, Xuebing Han, Zhengyu Chu, Jianqiu Li, Xiangming He, Khalil Amine, Minggao Ouyang, Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit, Joule, 2018, DOI: 10.1016/j.joule.2018.06.015
91. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Applied Energy, 2018, 228:633-644.
发表文章共560多篇,获专利授421项。
*以上信息由高级会员个人更新和维护。